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Abstract. Frictional stick-slip dynamics is studied theoretically and numerically in a model of one oscillator
interacting with a nonsinosoidal subtracted potential. We focus our attention on a class of parameterised
one-site Remoisenet-Peyrard potential URP (X, r), whose shape can be varied as a function of parameter r
and which has the sine-Gordon shape as the particular case. The dynamics of the model is carefully studied,
both numerically and analytically. Our numerical investigation, which involves bifurcation diagrams, shows
a rich spectrum of dynamical behavior including periodic, quasi-periodic and chaotic states. On the other
hand, and for a good selection of the parameter systems, the motion of the particle involves periodic stick-
slip, erratic and intermittent motions, characterized by force fluctuations, and sliding. This study suggests
that the transition between each of motion strongly depends on the shape parameter r. However, the stick-
slip phenomena can be observed for all values of the shape parameter r in the range |r| < 1. The analytical
analysis of the dry friction reveals that the dynamic depends non trivially on the shape parameter r, which
shows the importance of deformable substrate potential in the description of real physical systems.

PACS. 46.55.+d Tribology and mechanical contacts – 68.35.Iv Acoustical properties – 81.40.Pq Friction,
lubrication, and wear

1 Introduction

The interest in elucidating dissipative processes [1,2] on
various spatial and temporal scales, from microscopic to
macroscopic, that may occurs in all machines and mecha-
nism is justified by modern experimental technologies that
have made it possible to study wearless friction between
clean and atomically flat surface [3,4]. In particular, much
attention has been recently developed within the field of
nanotribology in the understanding of the nature of fric-
tion at the microscopic scale [1–4] sheared liquids con-
fined between two atomically smooth solid surfaces pro-
vide a good example of a system where a broad range of
phenomena and different behaviors have been experimen-
tally observed. The majority of surface force apparatus
(SFA) measurements have been performed with atomi-
cally flat mica surface [5–9]. On the other hand, great
attention is paid to the dynamics of dry friction, that is,
velocity independent friction. Moreover, it is now well un-
derstood that the dynamic behavior in several fields of
science with dry friction is nonlinear because Coulomb’s
laws [1] make a distinction between static friction force
and kinetic friction force. The static friction force is the
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force necessary to start sliding or a constraining force dur-
ing sticking (stick regime) while the kinetic friction force
is the force necessary to keep sliding at a constant velocity
(slip regime). If the static friction force is larger than the
kinetic one, or that the kinetic friction force drops rapidly
at small speeds, the sliding surfaces alternately switch be-
tween sticking and slipping in a more regular or irregular
fashion. This unstable motion is repeated in rapid succes-
sion until the slide reaches a certain velocity called the
critical velocity [10]. The results of these studies are very
encouraging, but in those systems, the shape of the non-
linear one-site potential may deviate considerably from
that attributed to the local potential. Thus, the classical
systems, which are generally associated with rigid poten-
tials, as sine-Gordon, cannot be satisfactorily used to de-
scribe them. Introduction of deformable potentials in the
description of those systems [11] is therefore indispensable
to obtain general results that can be applied to them. Con-
siderable effort has been made in the last two decades to
use deformable potentials in the context of the solitary
waves [12–16], and recently in the chaotic system [17–20].
In spite of these efforts, little is known about stick-slip
phenomena, which involve deformable potentials. There-
fore, the present work is a contribution to the growing field
of the concept of friction, and the problem of stick-slip
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Fig. 1. Schematic sketch of model geometric.

motion in a more complex periodic nonsinusoidal poten-
tial, which is of interest to our present investigation, in
which the shape parameter could account for the tem-
perature or pressure dependence, or the geometry of the
surface of the metallic surface.

The paper is organized as follows. In Section 2, we
define the model and present the equation of the field dis-
placement. Our analysis starts in Section 3 by the numer-
ical investigations including computation of bifurcations
diagrams. The properties of the pure dry friction force,
defined as the dissipated energy per unit length are car-
ried out in Section 4. Finally, in Section 5 the main con-
tributions of the paper are summarized.

2 Dynamical treatment

2.1 Model description and Lagrangian formalism

The purpose of this subsection is to introduce our model
schematised in Figure 1. It includes a particle of mass m
which moves along a straight line. The particle is pulled
by a spring with force constant K. This spring is con-
nected to a stage moving with a constant velocity V ,
and the displacement of the particle is characterized by
the variable X . To model the interaction between the
straight line and the particle, we consider a general class
of nonsinusoidal oscillators like the Remoissenet-Peyrard
(RP)-potential [12,13] which is one of the most popular
of the deformable potentials. This potential,

URP (X, r) = U0(1 − r)2
1 − cos(2πX/b)

1 + r2 + 2r cos(2πX/b)
|r| < 1 (1)

has constant amplitude and is 2π-periodic in X , where
X denotes the displacement field; U0 is a constant which
measures the amplitude of the potential (1), while b is the
period of the potential. The shape of the potential is de-
fined by the parameter r. For r > 0, the nonsinusoidal RP
potential has flat bottoms separated by thin barriers (see
Fig. 2a, for r = 0.6), while for r < 0, it has the shape of
sharp wells separated by flat wide barriers (see Fig. 2b, for
r = −0.6). For r = 0, the nonsinusoidal RP potential (1)
reduces to the sinusoidal potential which is the familiar
sine-Gordon (sG) potential. From the Lagrangian for the
nonconservative systems, the equation of motion for the

particle can be written in dimensionless form as:

ẍ + αẋ + c(1 − r2)2
sin x

(1 + r2 + 2r cosx)2

+ (x − vτ) = 0 (2)

where x = 2πX/b, is the coordinate of the particle, in
units of the period of the potential b, τ = Ωt is the di-
mensionless time, Ω =

√
K/m the frequency of the free

oscillations of the particle, α = µ/(mΩ) , is the dimension-
less constant friction which account for dissipation due to
phonons and/or others oscillations, and v = V/(bΩ) is the
dimensionless velocity, c = 4π2U0/Kb2 is a dimensionless
measure of the strength of the periodic potential compared
to that of the spring. Equation (2) can describe a dissipa-
tive parametrically driven pendulum, in a nonsinusoidal
subtracted potential. Below, we discuss the dependence of
the motion of the particle on the parameters of the sys-
tem. The main objective is to deduce information on the
microscopic properties of the system from the observed
dynamics of the particle. For this purpose, one needs to
understand the dependence of the dynamics on the me-
chanical (external) parameters and the parameters of the
embedded system (internal).

2.2 Numerical analysis of the motion of the particle

The present subsection presents the results of the numeri-
cal treatment. In order to understand dynamical processes
of the particle, equation (2) has been integrated numeri-
cally with fourth-order Runge-Kutta scheme with the time
step equals 0.055 and the initial conditions ẋ(0) = x(0) =
0. Depending on the parameters of the system, the present
model can present regular or chaotic behaviors. Thus, in a
particular set of the parameters of the system, and increas-
ing the velocity v, the behavior of the particle presents:
stick-slip, intermittent and sliding motions. The transi-
tion between the stick-slip and intermittent motions is
above a critical velocity v

(1)
c , while v

(2)
c corresponds to

the transition between intermittent and sliding motions.
These two critical velocities strongly depend on the physi-
cal parameters of our model, and particularly on the shape
parameter r.

2.2.1 Phase space and stroboscopic observation

To present the dynamical behavior of the particle, we
use the phase space representation of the expression z =
x − vτ + αv versus ż. With the variation of the param-
eters c, and v, the numerical results are shown in Fig-
ures 3a–3c, where one can see, a periodic structure or
limit cycle with period 1 (see Fig. 3a), where the curve
is obtained for the set of parameters c = 5, α = 0.5,
v = 3 and r = −0.5. Moreover, with the following pa-
rameters c = 5, α = 0.5, v = 1 and r = 0.2, we obtain
a limit cycle with period 2 (see Fig. 3b). Taking the pa-
rameter c = 5, α = 0.5, v = 1 and r = −0.5, we obtain
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Fig. 2. Form of RP potential for (a): r = −0.6, (b): r = 0.6.

Fig. 3. Phase space representation of the motion of the particle for selected values of the parameters v and r, with c = 5 and
α = 0.5. (a) Limit cycle for r = −0.5 and v = 3; (b) period 2 for r = 0.2 and v = 1; (c) chaotic behavior for r = −0.5 and v = 1.

Fig. 4. Stroboscopic representation plot x(τ ) − vτ at time τ = 2πn/v for n = 1, 2, ..., 100 versus v, for three selected values of
parameters r indicated in the graph; with c = 5 and α = 0.5.

a chaotic structure (see Fig. 3c). Furthermore, numeri-
cal solutions show that for a given damping coefficient α,
and after a time τ � 2π/v, the function x(τ) − vτ usu-
ally becomes periodic with period 2πn/v (n integer) and
x
(
τ + (2πn/v)

)
= x(τ) + 2πn where the integer n de-

pends on of the parameters c, and r, and also on the ini-
tial conditions. For the parameters c = 4, α = 0.5 and for
n = 1, 2, 3, ..., 100, Figures 4a–4c and 5a–5c display the
value of x(τ) − vτ for integer multiples of periods. One

can see in Figures 4a–4c, the stroboscopic representation
as a function of v for three values of the shape parameter
r. While Figures 5a, 5b show the stroboscopic represen-
tation as a function of the shape parameter r for certain
values of the velocity v. In the range −0.5 < r < 0.5, the
system is regular at the low velocity. This regular behavior
disappears with increasing velocity v. These stroboscopic
representations display bifurcation and chaotic motions,
and show the range of velocity v or parameters k0 where
the motion is chaotic or regular. As we will see below, for
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Fig. 5. Stroboscopic representation plot x(τ ) − vτ at time τ = 2πn/v for n = 1, 2, ..., 100 versus r, for three selected values of
velocity v indicated in the graph; with c = 5 and α = 0.5.

the other set of the system parameters, the model under
consideration exhibits stick-slip phenomena.

2.2.2 Stick-slip phenomena

The stick-slip motion is characterized by two regimes: in
the first regime, the particle is trapped (creep) by the
subtract and make microscopic oscillations in the minima
of the potential

U(X, r, t) = URP (X, r) +
1
2
K(X − V t). (3)

Figures 6a, 6b show the form of this potential for two se-
lected values of the shape parameter r. Then, a rapid slid-
ing motion takes place and moves the particle in the next
minima of the potential. Figure 7a, in the phase portrait
(x, ẋ), presents the typical phenomena of stick-slip mo-
tion. In this figure, one can then observe positions where
the particle is trapped by the substrate and makes mi-
croscopic oscillations, stops an instant when its velocity
ẋ becomes zero. This velocity ẋ which is zero, increases
suddenly, the particle slides rapidly and goes in the next
minima of the potential; and the same scenario begins.
One can observe that the particle goes on one minimum
to another in a rapid and regular way, i.e. in a periodic
way. Moreover, the form of oscillations, which is present
in Figure 7b, is the same in each well of the potential and
this characterizes the periodic stick-slip motion. Note that
this form of oscillations strongly depends on the param-
eters of our physical system. As shown in Figure 7b, one
can observe the interval [a,b] which corresponds to a very
slow motion (creep) of the particle located in the minima

of the potential. The particle starts to slide at the saddle
point b, where the instability occurs, approaches the max-
imal velocity at the point c, and comes again to rest at
the point a, but in the next minima of the potential. At
the point of instability b, the spring force reaches a max-
imum value corresponding to the static friction force fs

(see Fig. 9a). The static friction force equals the maxi-
mum value of the force acting on the particle; this force,
depend explicitly on the shape parameter r as follows

fs = 2πc

(
1 − r2

1 + r2

)2

. (4)

Figure 8 shows the variation of the static friction as a
function of r. One can easily see the symmetric property
as a function of r. During the sliding, the spring force
fr = −(x−vτ) decreases until it reaches a value fk, where
the sliding ceases and the particle is trapped again at a
potential minimum. The evolution of the spring force is
plotted in Figures 9a–9c in three regimes of the particle
motion corresponding to the stick-slip, intermittent and
smooth sliding motions, respectively. This evolution per-
mits us to detect the critical velocities v

(1)
c (r) and v

(2)
c (r).

2.2.3 Influence of the shape parameter r on the transition
from stick-slip motion to modulated sliding state

As the stage velocity increases, the stick-slip motion of
the particle becomes more erratic and intermittent, and
then changes to periodically modulated sliding state. Fig-
ure 10 shows the dynamical phase diagram (in the r − v
plane), which presents regions of the shape parameter r
that correspond to different regimes of the motion of the
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Fig. 6. Dimensionless total potential 4π2U(X, r, t/Kb2) versus the dimensionless particle coordinate 2πX/b, drawn for c = 5
and α = 4, (a) r = −0.6; (b) r = 0.6.

Fig. 7. With the set of parameters c = 4, r = 0.6, α = 0.4 and v = 0.06. (a) Displacement of the particle in the stick-slip
regime; (b) form of oscillations in the minima of the potential.

particle. Stick-slip motion and smooth sliding occur re-
spectively to the left at the line v

(1)
c (r) and to the right of

the line v
(2)
c (r). The system exhibits an intermittent mo-

tion in the range of parameters between these two curves.
The lines v

(1)
c (r) and v

(2)
c (r) describe the r dependence

of the critical velocities corresponding to transitions be-
tween different states of motion. These critical velocities
have been found by numerical analysis of the solutions of
equation (2). As the driving velocity varies from v

(1)
c (r) to

v
(2)
c (r), the motion of the particle bifurcates from the pe-

riodic stick-slip motion to modulated sliding state. Above
v
(1)
c (r), the stick-slip motion becomes erratic and inter-

mittent. For a wide range of the system parameters, we
find that the motion is chaotic (see Fig. 9b). In this figure
it appears that the transition from the periodic stick-slip
motion to smooth sliding which occurs in high velocity
also depends on the shape parameter r.

3 Pure dry friction

We consider very small velocities v � 1, but consider
times, which are larger so that V t → L0 is finite. In
this case, the stage is effectively at rest during the fall
of the particle into a minimum potential. At all times,
except during the fall, the particle is in a minima of the
total potential U(X, r, t). One of the key parameter used
to characterize the beginning of the drop is the second
derivative d2U(X, r, t)/dX2, which changes sign when an
instability occurs. After a dropping motion, the particle

Fig. 8. Evolution of the static friction force as a function of
the shape parameter r for c = 0.3.

Fig. 9. Time series of the spring force corresponding to the
three regimes of the particle motion: (a) stick-slip regime,
for v = 0.06; (b) intermittent regime, for v = 1.6; (c) slid-
ing for v = 4.6. Parameters are the same as in Figures 3, 6,
except for the velocities.
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Fig. 10. Dynamical phase diagram for the motion of the par-

ticle for c = 4, α = 0.4. The first curve v
(1)
c (r) indicates the

boundary between the stick-slip and intermittent motions, and

the second curve v
(2)
c (r) is the velocity boundary of the sliding

motion. Open circles and stars show the results of numerical

calculations of v
(1)
c (r) and v

(1)
c (r), respectively.

is still at a minimum potential. When there are several
minima of U(X, r, t), the question of where it comes to
rest can only be solved using the equation of the motion.
The position L0 and X0 of the stage and the particle at the
beginning of the drop, respectively, are now determined at
the saddle point given by

dU(X, r, t)
dX

= 0 (5a)

d2U(X, r, t)
dX2

= 0. (5b)

Such a scheme is expected to be valid if we assume that
the viscous friction is sufficiently large so that the particle
comes at rest in the next minimum. The energy dissipated
during the drop is

�W = U(X0, L0) − U(X1, L0). (6)

Parameters X0, L0 and U(X0, r, L0) can be evaluated an-
alytically. U(X1, r, L0) is evaluated numerically, where X1

is the next larger value of X that satisfies equation (5a).
In addition, the notations

x0 =
2πX0

b
, x1 =

2πX1

b
, l0 =

2πL0

b
(7)

are introduced in dimensionless form. In this sense, x0 is
the solution of the cubic equation

a3 cosx3 + a2 cosx2 + a1 cosx + a0 = 0 (8)

where the coefficients ai(i = 1, 2, 3) depend on the shape
parameter as

a3 = 8r3

a2 = 12r2(1 + r2) − 2cr(1 − r2)2

a1 = c(1 − r2)2(1 + r2) + 6r(1 + r2)2

a0 = (1 + r2)3 + 4cr(1 − r2)2. (9)

To obtain the solution of equation (8), it is useful to in-
troduce the transformations

α =
a2

a3
, β =

a1

a3
, γ =

a0

a3
. (10)

Applying the transformation of Thirnaus gives all solu-
tions of equation (8) as follows

x0 = arccos
(√−4

3p3
cos

(
θ

3
+

2kπ

3

)
− α

3

)
,

θ =
1
3

arccos
(

q

√−27
4p3

)
, k = 0, 1, 2 (11)

with

p = β − α2

3
and q = − α

27
(2α2 − 9β) + γ (12)

and

l0 = x0 + c(1 − r2)2
sin x0

(1 + r2 + 2r cosx0)2
. (13)

In the calculation, the condition p < 0 is needed for any
value of the shape parameter r.

With the value of l0, we look for the next value x = x1,
which satisfies equation (5.a), that is

x1 + c(1 − r2)2
sin x1

(1 + r2 + 2r cosx1)2
= l0. (14)

The dry friction force F is defined as the dissipated energy
per unit length, that is F = ∆W/b, which in dimensionless
form is, f = F/(Kb/4π2). This dry friction force f is
given by

f(c) =
1
2
(x0 − l0)2 + c(1 − r)2

1 − cosx0

1 + r2 + 2r cosx0

− 1
2
(x1 − l0)2 − c(1 − r)2

1 − cosx1

1 + r2 + 2r cosx1
. (15)

It appears in equation (4) that the dimensionless static
force depends much on the dimensionless measure of the
strength of the periodic nonsinusoidal RP-potential c and
the shape parameter r. It also appears in equation (15)
that the dimensionless dry friction depends on the di-
mensionless measure of the strength of the periodic non-
sinusoidal RP potential c and the shape parameter r.
Due to its analytical complexity, it has been determined
only numerically through the variable c (with all the in-
formation about the function determined in the range
10−2 < (c − 1) < 104 in the log-log plotting). Further,
from Figures 11a–11c, it should be noted that these two
forces present a symmetric behavior as a function of the
shape parameter r.

In the particular case where r = 0, the average fric-
tion force can be calculated analytically for two limiting
cases [21]

f =
9
2
(c − 1)2 − 18

5
(c − 1)3 +

531
175

(c − 1)4

+ ©((c − 1)5) for c − 1 � 1 (16)
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Fig. 11. Dimensionless dry friction force as a function of c − 1 for arbitrary slow motion (v → 0), for selected values of the
shape parameter r indicated on the graphs. The parameter c is the dimensionless measure of the amplitude of the potential.
Dashed line is obtained by the approximated analytical estimates.

and

f = 2πc−2π2+
8
3
π3/2c−1/2−πc−1+©((c)−3/2) for c � 1.

(17)

The corresponding static frictional force here is fs = 2πc
(r = 0). In this case, it is interesting to compare nu-
merical results of this force with the approximated es-
timates (Eqs. (16, 17)). Thus, we carry out a direct nu-
merical evaluation of dry friction force (Eq. (15)) with
a3 = a2 = 0, a1 = c and a0 = 1. This allows us to obtain
x0 = arccos(−1/c), l0 = arccos(−1/c)+

√
c2 − 1 and x1 is

evaluated numerically with x1 + c sinx1 = l0. Plotting in
the same graph, the approximated (dashed line) dry fric-
tion force and the exact one (solid line), the comparison
can easily be done. For these calculations, we have been
able to reproduce in the range (c − 1) > 1 as indicated
in Figure 11d, the exact result in good agreement with
approximation that we have considered.

4 Conclusion

In this work, we have been able to describe dynamic stick-
slip friction in a non linear model that contains a periodic
nonsinusoidal substrate potential. The nonlinearity of the
problem gives rise to a variety of complex features, such as
bifurcation, chaotic motion, periodic stick-slip, erratic and
intermittent motions, characterized by force fluctuations,
and sliding above the critical velocity v

(2)
c (r). Intensive

investigations have been carried out on equations (2) and
particular attention is allocated to investigations on dry
friction which depends on the parameter r. We have also
shown the substantial impact of the shape parameter on
static and dry frictions. These forces have a symmetric
behavior as a function of the parameter r. It should be
noted that the critical velocities, which present the tran-
sition between the different regimes of the particle motion,
strongly depend on the shape parameter r. Our calcula-
tion also demonstrated that a variation of the shape pa-
rameter affects the dynamical phase diagram [leading to
a shift of the boundary lines v

(1)
c (r) and v

(2)
c (r)]. This de-

formable model leads to a variety of phenomena, which
may contribute to a better description of the dry friction.
In general, the shape variation of the potential is com-
monly ignored since all studies are limited to the sinu-
soidal potential, which is the leading term in the nonsinu-
soidal RP potential. As the periodic sinusoidal substrate
potential is of important, our results have potentially an
equally wide range of applications in physics and chem-
istry.
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Fractals 15, 119 (2003)
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